Python 3 - Tools/Utilities

Neha Kumawat

8 months ago

Python 3 - Tools/Utilities | insideAIML
          The standard library comes with a number of modules that can be used both as modules and as command-line utilities.
Table of Contents
  • The dis Module
  • The pdb Module
  • The profile Module
  • The tabnanny Module

The dis Module

          The dis module is the Python disassembler. It converts byte codes to a format that is slightly more appropriate for human consumption.
You can run the disassembler from the command line. It compiles the given script and prints the disassembled byte codes to the STDOUT. You can also use dis as a module. The dis function takes a class, method, function or code object as its single argument.
Example

#!/usr/bin/python3
import dis

def sum():
   vara = 10
   varb = 20

   sum = vara + varb
   print ("vara + varb = %d" % sum)

# Call dis function for the function.

dis.dis(sum)
This would produce the following result −

  6           0 LOAD_CONST               1 (10)
              3 STORE_FAST               0 (vara)

  7           6 LOAD_CONST               2 (20)
              9 STORE_FAST               1 (varb)

  9          12 LOAD_FAST                0 (vara)
             15 LOAD_FAST                1 (varb)
             18 BINARY_ADD
             19 STORE_FAST               2 (sum)

 10          22 LOAD_CONST               3 ('vara + varb = %d')
             25 LOAD_FAST                2 (sum)
             28 BINARY_MODULO
             29 PRINT_ITEM
             30 PRINT_NEWLINE
             31 LOAD_CONST               0 (None)
             34 RETURN_VALUE

The pdb Module

          The pdb module is the standard Python debugger. It is based on the bdb debugger framework.
You can run the debugger from the command line (type n [or next] to go to the next line and help to get a list of available commands) −
Example:
Before you try to run pdb.py, set your path properly to Python lib directory. So let us try with above example sum.py −

$pdb.py sum.py
> /test/sum.py(3)()
-> import dis
(Pdb) n
> /test/sum.py(5)()
-> def sum():
(Pdb) n
>/test/sum.py(14)()
-> dis.dis(sum)
(Pdb) n
  6           0 LOAD_CONST               1 (10)
              3 STORE_FAST               0 (vara)

  7           6 LOAD_CONST               2 (20)
              9 STORE_FAST               1 (varb)

  9          12 LOAD_FAST                0 (vara)
             15 LOAD_FAST                1 (varb)
             18 BINARY_ADD
             19 STORE_FAST               2 (sum)

 10          22 LOAD_CONST               3 ('vara + varb = %d')
             25 LOAD_FAST                2 (sum)
             28 BINARY_MODULO
             29 PRINT_ITEM
             30 PRINT_NEWLINE
             31 LOAD_CONST               0 (None)
             34 RETURN_VALUE
--Return--
> /test/sum.py(14)()->None
-v dis.dis(sum)
(Pdb) n
--Return--
> (1)()->None
(Pdb)

The profile Module

          The profile module is the standard Python profiler. You can run the profiler from the command line −
Example
Let us try to profile the following program −

#!/usr/bin/python3

vara = 10
varb = 20

sum = vara + varb
print "vara + varb = %d" % sum
Now, try running cProfile.py over this file sum.py as follows −

$cProfile.py sum.py
vara + varb = 30
         4 function calls in 0.000 CPU seconds

   Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno
   1    0.000    0.000    0.000    0.000 :1()
   1    0.000    0.000    0.000    0.000 sum.py:3()
   1    0.000    0.000    0.000    0.000 {execfile}
   1    0.000    0.000    0.000    0.000 {method ......}

The tabnanny Module

          The tabnanny module checks Python source files for ambiguous indentation. If a file mixes tabs and spaces in a way that throws off indentation, no matter what tab size you're using, the nanny complains −
Example
Let us try to profile the following program −

#!/usr/bin/python3

vara = 10
varb = 20

sum = vara + varb
print "vara + varb = %d" % sum
If you would try a correct file with tabnanny.py, then it won't complain as follows −

$tabnanny.py -v sum.py
'sum.py': Clean bill of health.
   
Like the Blog, then Share it with your friends and colleagues to make this AI community stronger. 
To learn more about nuances of Artificial Intelligence, Python Programming, Deep Learning, Data Science and Machine Learning, visit our insideAIML blog page.
Keep Learning. Keep Growing. 

Submit Review