World's Best AI Learning Platform with profoundly Demanding Certification Programs
Designed by IITians, only for AI Learners.
Designed by IITians, only for AI Learners.
New to InsideAIML? Create an account
Employer? Create an account
Download our e-book of Introduction To Python
4.5 (1,292 Ratings)
559 Learners
Shahid Ahmed
a year ago
sentences = [
['Word', 'embeddings', 'work', 'by', 'using', 'an', 'algorithm'],
['this', 'is', 'the', 'InsideAIML', 'website'],
['you', 'can', 'read', 'technical','articles', 'for','free'],
['We', 'will', 'use', 'the', 'Gensim', 'library'],
['learn', 'python', 'programming', 'on', 'insideaiml']
]
from gensim.models import Word2Vec
sentences = [
['Word', 'embeddings', 'work', 'by', 'using', 'an', 'algorithm'],
['this', 'is', 'the', 'InsideAIML', 'website'],
['you', 'can', 'read', 'technical','articles', 'for','free'],
['We', 'will', 'use', 'the', 'Gensim', 'library'],
['learn', 'python', 'programming', 'on', 'insideaiml']
]
W2V_model = Word2Vec(sentences, min_count=1)
print(W2V_model)
words = list(W2V_model.wv.vocab)
print(words)
print(W2V_model['insideaiml'])
W2V_model.save('W2V_model.bin')
Word2Vec_model = Word2Vec.load('W2V_model.bin')
print(Word2Vec_model)
Word2Vec(vocab=29, size=100, alpha=0.025)
['Word', 'embeddings', 'work', 'by', 'using', 'an', 'algorithm', 'this', 'is', 'the', 'InsideAIML', 'website', 'you', 'can', 'read', 'technical', 'articles', 'for', 'free', 'We', 'will', 'use', 'Gensim', 'library', 'learn', 'python', 'programming', 'on', 'insideaiml']
[ 2.3622620e-03 4.3221487e-04 3.9335857e-03 -1.2020235e-03
-9.9151593e-04 2.8309512e-03 4.7964812e-03 -3.7568363e-03
-4.9456498e-03 3.6903718e-03 -4.8737871e-03 -3.9381068e-03
2.5999357e-03 1.3458870e-03 2.2719600e-03 -1.9624005e-03
3.5575717e-03 4.6965261e-03 -6.2980008e-04 -3.6406862e-03
-3.5829267e-03 1.6928543e-03 1.4477138e-03 1.1637001e-03
-4.7915865e-04 1.3976435e-03 -2.3567895e-03 2.9160331e-03
-4.4381022e-03 2.0105252e-03 -2.9324128e-03 1.6421793e-03
-5.0091086e-04 2.3349845e-03 -4.1118253e-04 -9.2874817e-04
4.4296873e-03 -3.4641903e-03 4.3619485e-03 4.7739753e-03
4.8495419e-03 3.6664470e-03 3.8093987e-03 3.6490641e-03
-3.3609912e-04 2.9555541e-03 -1.0483260e-03 -4.3996158e-03
2.6523159e-03 -3.4169867e-03 1.3806688e-03 -6.9535966e-04
-5.6781049e-04 3.5429434e-03 -1.8909144e-03 3.0394471e-03
4.1374662e-03 -4.5139138e-03 4.5683607e-03 2.7697829e-03
2.3550272e-03 1.3603187e-03 -4.5494111e-03 7.6852361e-04
-4.8047729e-04 -2.4365645e-03 4.2462661e-03 2.0318357e-03
-1.9684029e-03 1.5639960e-03 -4.5757894e-03 2.1069648e-03
-3.5330481e-03 -1.3349410e-03 1.9695498e-03 3.1291901e-03
4.7138124e-03 -2.2136174e-04 -2.9766995e-03 -4.5496337e-03
-3.2605783e-03 1.5357189e-03 -1.9210422e-03 -1.8419328e-03
3.9830280e-05 2.9295796e-04 -4.0149586e-03 -4.4272095e-03
5.2146171e-04 3.7140078e-03 -3.3862747e-03 -6.4570026e-04
-4.8357933e-03 3.9663548e-03 3.4471180e-03 3.9999108e-04
2.2896260e-03 4.4800160e-03 3.8771254e-03 -1.2966482e-03]
Word2Vec(vocab=29, size=100, alpha=0.025)
from gensim.models import Word2Vec
from sklearn.decomposition import PCA
from matplotlib import pyplot
sentences = [
['Word', 'embeddings', 'work', 'by', 'using', 'an', 'algorithm'],
['this', 'is', 'the', 'InsideAIML', 'website'],
['you', 'can', 'read', 'technical','articles', 'for','free'],
['We', 'will', 'use', 'the', 'Gensim', 'library'],
['learn', 'python', 'programming', 'on', 'insideaiml']
]
W2V_model = Word2Vec(sentences, min_count=1)
vec = W2V_model[W2V_model.wv.vocab]
pca = PCA(n_components=2)
result = pca.fit_transform(vec)
pyplot.scatter(result[:, 0], result[:, 1])
words = list(W2V_model.wv.vocab)
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()