World's Best AI Learning Platform with profoundly Demanding Certification Programs
Designed by IITians, only for AI Learners.
Designed by IITians, only for AI Learners.
New to InsideAIML? Create an account
Employer? Create an account
Download our e-book of Introduction To Python
4.5 (1,292 Ratings)
559 Learners
Shashank Shanu
a year ago
# import the pandas library
import pandas as pd
left_df = pd.DataFrame({
'S.No.':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen',
'Alice', 'Ayoung'],
'subjects':['Maths','Physics','Chemistry','Biology','Civis']})
right_df = pd.DataFrame(
{'S.No.':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran',
'Bryce', 'Betty'],
'subjects':['Physics','Chemistry','History','Biology','Civis']})
print(left_df)
print(right_df)
S.No. Name subjects
0 1 Alex Maths
1 2 Amy Physics
2 3 Allen Chemistry
3 4 Alice Biology
4 5 Ayoung Civics
S.No. Name subjects
0 1 Billy Physics
1 2 Brian Chemistry
2 3 Bran History
3 4 Bryce Biology
4 5 Betty Civics
# import the pandas library
import pandas as pd
ipl = {'Team name': ['Riders', 'Riders', 'Devils',
'Devils', 'Kings',
'kings',
'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank':
[1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year':
[2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Total
Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df1 = pd.DataFrame(ipl)
grouped = df.groupby('Year')
print(grouped.get_group(2014))
Team Rank Year Points
0 Riders 1 2014 876
2 Devils 2 2014 863
4 Kings 3 2014 741
9 Royals 4 2014 701
import
pandas as pd
first_df
= pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen',
'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
second_df
= pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran',
'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print(pd.concat([first_df,second_df]))
Name subject_id Marks_scored
1 Alex sub1 98
2 Amy sub2 90
3 Allen sub4 87
4 Alice sub6 69
5 Ayoung sub5 78
1 Billy sub2 89
2 Brian sub4
80
3 Bran sub3 79
4 Bryce sub6 97
5 Betty sub5 88