World's Best AI Learning Platform with profoundly Demanding Certification Programs
Designed by IITians, only for AI Learners.
Designed by IITians, only for AI Learners.
New to InsideAIML? Create an account
Employer? Create an account
Download our e-book of Introduction To Python
4.5 (1,292 Ratings)
559 Learners
Shivani Upare
a year ago
#import the pandas library
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.randn(5,3), index=['a', 'c', 'e', 'f','h'],columns=['Column1',
'Column2', 'Column3'])
data = data.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(data)
Column1 Column2 Column3
a -0.067397 -1.570255 -0.898418
b NaN NaN NaN
c 1.311982 1.972563 0.743876
d NaN NaN NaN
e 0.516474 -0.436298 -0.336320
f 0.587955 0.928367 1.014634
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['Column1','Column2', 'Column3'])
data = data.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(data['Column1'].isnone())
a false
b true
c false
d true
e false
f false
g true
h false
Name: Column1, dtype: bool
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['Column1',
'Column2', 'Column3'])
data = data.reindex(['a', 'b', 'c'])
print(data)
print
("NaN replaced with '0':")
print
(df.fillna(0))
Column1 Column2 Column3
a -1.145282 -1.204689 -0.011520
b NaN NaN NaN
c 1.054585 0.450895 -1.765849
NaN replaced with '0':
Column1 Column2 Column3
a 1.028044 -0.059059 0.814159
b 0.000000 0.000000 0.000000
c -0.093614 0.502746 -0.979775
d 0.000000 0.000000 0.000000
e -0.926268 0.819182 0.057756
f 0.654027 1.196219 1.441782
g 0.000000 0.000000 0.000000
h 0.888539 0.472792 -1.369401
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.randn(5,3), index=['a', 'c', 'e', 'f',
'h'],columns=['Column1','Column2', 'Column3'])
data = data.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(data.fillna(method='pad'))
Column1 Column2 Column3
a 0.863373 0.113220 0.167150
b 0.863373 0.113220 0.167150
c 0.175815 0.526849 0.074818
d 0.175815 0.526849 0.074818
e -0.203824 -0.921412 1.200571
f 0.864100 1.263429 -0.200021
g 0.864100 1.263429 -0.200021
h 1.774977 -0.118278 0.415756
import pandas as pd
import numpy as np
data =pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',
'h'],columns=['Column1','Column2', 'Column3'])
data = data.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(data.dropna())
Column1 Column2 Column3
a -0.316294 0.890039 0.349166
c -1.297559 0.113461 0.884424
e -2.175159 0.379806 2.231736
f -2.385318 1.803276 -0.342873
h 1.372849 1.482879 -0.349323
import pandas as pd
import numpy as np
data = pd.DataFrame({'Column1':[10,20,30,40,50,2000],
'Column2':[1000,0,30,40,50,60]})
print(data.replace({1000:10,2000:60}))
Column1 Column2
0 10 10
1 20 0
2 30 30
3 40 40
4 50 50
5 60 60